Chrome Extension
WeChat Mini Program
Use on ChatGLM

Petroleum Drilling Techniques Journal

Papers
Publisher
Gensheng Li(李根生)
College of Petroleum Engineering, China University of Petroleum - Beijing;State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum - Beijing41
Deli Gao(高德利)
College of Petroleum Engineering, China University of Petroleum - Beijing35
Ruihe Wang(王瑞和)
School of Petroleum Engineering, China University of Petroleum31
Tingxue Jiang(蒋廷学)
Sinopec Research Institute of Petroleum Engineering,Beijing,,China27
Xiangfang Li(李相方)
College of Petroleum Engineering, China University of Petroleum26
Zhichuan Guan(管志川)
School of Petroleum Engineering,China University of Petroleum24
Zhengsong Qiu(邱正松)
School of Petroleum Engineering, China University of Petroleum23
Yijin Zeng(曾义金)
Research Institute of Petroleum Engineering,SINOPEC,Beijing ,China22
Yuanfang Cheng(程远方)
School of Petroleum Engineering,China University of Petroleum21
Jienian Yan(鄢捷年)
Ministry of Education Key Laboratory of Petroleum Engineering, China University of Petroleum (Beijing)21
Yan Jin(金衍)
College of Petroleum Engineering, China University of Petroleum-Beijing20
Yuhuan Bu(步玉环)
School of Petroleum Engineering,China University of Petroleum19
Mian Chen(陈勉)
College of Petroleum Engineering, China University of Petroleum-Beijing19
Shidong Ding(丁士东)
Sinopec Research Institute of Petroleum Engineering18
Honghai Fan(樊洪海)
College of Petroleum Engineering, China University of Petroleum - Beijing18
Shiming Zhou(周仕明)
China Petroleum & Chemical Corporation17
Yuanhua Lin(林元华)
Petroleum Engineering School, Southwest Petroleum University17
Yongxue Lin(林永学)
Sinopec Research Institute of Petroleum Engineering17
Qinfeng Di(狄勤丰)
School of Mechanics and Engineering Science, Shanghai University;Shanghai Institute of Applied Mathematics and Mechanics16
Baojiang Sun(孙宝江)
School of Petroleum Engineering, China University of Petroleum16
Xiaodong Wu(吴晓东)
College of International Education, China University of Petroleum(Beijing);College of Petroleum Engineering, China University of Petroleum(Beijing)16
LanRong Ma(马兰荣)
16
Shi Taihe
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University15
Zuo Chen(陈作)
China Petroleum & Chemical Corporation15
Yingfeng Meng(孟英峰)
Petroleum Engineering School, Southwest Petroleum University;National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University14
Weidong Zhou(周卫东)
School of Petroleum Engineering, China University of Petroleum14
Deyong Zou(邹德永)
School of Petroleum Engineering,China University of Petroleum14
Minsheng Wang(王敏生)
Sinopec13
Jingen Deng(邓金根)
College of Petroleum Engineering, China University of Petroleum-Beljing13
Gao Li(李皋)
Petroleum Engineering School, Southwest Petroleum University13
Baoping Lu(路保平)
SINOPEC Research Institute of Petroleum Engineering Co., Ltd13
Laiju Han(韩来聚)
13
Xiushan Liu(刘修善)
Sinopec Research Institute of Petroleum Engineering12
Yongyin Yang(杨永印)
School of Petroleum Engineering,China University of Petroleum12
Jun Yao(姚军)
School of Petroleum Engineering, China University of Petroleum12
Zhiyuan Wang(王志远)
School of Petroleum Engineering, China University of Petroleum12
Xiaohua Zhu(祝效华)
Southwest University of Science and Technology12
zuan shi(石钻)
12
Zhonghou Shen(沈忠厚)
School of Petroleum Engineering,China University of Petroleum12
Tianke Liu(刘天科)
Ministry of Land and Resources, Chinese Academy of Economics11
Yili Kang(康毅力)
Petroleum Engineering School, Southwest Petroleum University11
Hongjun Zhang(张宏军)
Yellow River Company, Shengli Oilfield Bureau11
Gonghui Liu(柳贡慧)
11
Changyin Dong(董长银)
School of Petroleum Engineering, China University of Petroleum10
Hongzhi Bao(鲍洪志)
Sinopec Research Institute of Petroleum Engineering10
Wei Zhang(张卫)
Sinopec Research Institute of Petroleum Engineering10
Xianzhi Song(宋先知)
College of Petroleum Engineering, China University of Petroleum-Beijing10
Zifeng Li(李子丰)
10
Xiaozhi Zheng(郑晓志)
Sinopec Research Institute of Petroleum Engineering10
Jun Li(李军)
College of Artificial Intelligence, China University of Petroleum - Beijing10
Hongkui Ge(葛洪魁)
China University of Petroleum10
Kaihua Ma(马开华)
10
GuiLin Zhang(张桂林)
10
Weian Huang(黄维安)
9
Tie Yan(闫铁)
Northeast Petroleum University9
Xinghua Tao(陶兴华)
9
Jinhai Zhao(赵金海)
SINOPEC Research Institute of Petroleum Engineering Co., Ltd9
Xiaobing Bian(卞晓冰)
9
Jinzhou Zhao(赵金洲)
Petroleum Engineering School, Southwest Petroleum University9
YingCao Zhou(周英操)
CNPC Drilling Research Institute(CNPC Drilling Research Institute),,China9
Zhiming Wang(汪志明)
College of Petroleum Engineering, China University of Petroleum - Beijing9
Shouceng Tian(田守嶒)
College of Petroleum Engineering, China University of Petroleum-Beijing8
Yihua Dou(窦益华)
8
Xuncheng Song(宋洵成)
School of Petroleum Engineering, China University of Petroleum8
Fuhua Wang(王富华)
School of Petroleum Engineering, China University of Petroleum8
Yucai Shi(史玉才)
School of Petroleum Engineering, China University of Petroleum8
Hongjian Ni(倪红坚)
School of Petroleum Engineering,China University of Petroleum8
Bairu Xia(夏柏如)
School of Engineering and Technology, China University of Geosciences, Beijing8
Yongming He(何勇明)
College of Energy, Chengdu University of Technology8
ShunHui Yang(杨顺辉)
8
Gongrang Li
8
Dechun Chen(陈德春)
School of Petroleum Engineering, China University of Petroleum7
Genlu Huang(黄根炉)
School of Petroleum Engineering, China University of Petroleum7
Yequan Jin(金业权)
School of Petroleum Engineering, China University of Petroleum7
Yishan Lou(楼一珊)
7
Zhiping Li(李治平)
China University of Geosciences Beijing7
Lizhong Hou(侯立中)
7
Qin Su(苏勤)
7
Jianliang Zhou(周建良)
CNOOC Research Institute,Beijing,7
Kaihe Lv(吕开河)
School of Petroleum Engineering, China University of Petroleum7
Jiafang Xu(徐加放)
School of Petroleum Engineering, China University of Petroleum7
Guancheng Jiang(蒋官澄)
College of Petroleum Engineering, China University of Petroleum - Beijing7
Shenglai Yang(杨胜来)
College of Petroleum Engineering, China University of Petroleum - Beijing7
Rongyi Ji(纪荣艺)
College of Petroleum Engineering, China University of Petroleum - Beijing7
Linsong Cheng(程林松)
College of Petroleum Engineering, China University of Petroleum - Beijing7
Weining Ni(倪卫宁)
7
Zhongwei Huang(黄中伟)
College of Petroleum Engineering, China University of Petroleum7
MingJian Dong(董明键)
7
Liangbin Xu(许亮斌)
CNOOC Research Institute,Beijing ,China6
Wenzhong Wei(魏文忠)
6
Daiyan Wei(韦代延)
6
Hongxiang Qin(秦红祥)
6
Chaosu Jin(金潮苏)
6
Yuanjiang Chang(畅元江)
College of Mechanical and Electronic Engineering, China University of Petroleum6
Shiqing Cheng(程时清)
China University of Petroleum-Beijing6
Yuliang Su(苏玉亮)
School Of Petroleum Engineering, China University Of Petroleum6
Jianchun Guo(郭建春)
Petroleum Engineering School, Southwest Petroleum University;National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University6
Feipeng Wu(吴飞鹏)
School of Petroleum Engineering, China University of Petroleum6
Feng Chen(陈锋)
School of Mechatronic Engineering and Automation, Shanghai University6
Baoping Zhang(张保平)
Sinopec Research Institute of Petroleum Engineering6
水热裂解降粘开采稠油技术,是在注入蒸汽的条件下,借助于稠油与蒸汽之间发生的化学反应,降低稠油的粘度,从而达到井下降粘开采稠油的目的。从水热裂解反应、催化水热裂解反应、水热裂解反应影响因素、开采技术的可行性以及催化水热裂解反应机理等方面介绍了稠油水热裂解开采技术的研究进展,发现反应时间、反应温度、催化剂、催化剂加量、油层矿物等部影响稠油水热裂解反应;稠油水热裂解开采技术在理论上、油层催化裂化和催化剂选择的广泛性上部是可行的。对该技术的发展进行了探讨,认为水热裂解开采稠油技术具有广泛的发展前景, 是未来开采稠油油藏的主要技术之一,指出当前水热裂解开采稠油技术...
Cited6Views36
6
36
BibtexChatPaperRate
泡沫水泥具有密度低、强度大、渗透率低、无游离液和防气窜等特点,主要用于长封固井段或低压易漏地层的固井施工。由于在泡沫水泥中含有气体,其中气体参数又是温度和压力的函数,因此在固井施工设计中不能采用常规固井理论进行相关计算。为此,根据实际固井施工模型,利用水力学知识与热力学原理建立了相应的计算模型,在对泡沫水泥密度和压力变化分析基础上,形成了适用于固井现场的泡沫水泥修正压力计算方法。详细阐述了施工模型的建模思路和求解过程,并通过修正压力计算值与采用数值方法求解的压力值对比,说明了该计算方法在误差范围内的正确性和可行性,能够为现场固井压力计算提供参考。
Cited3Views41
3
41
BibtexChatPaperRate
为了有效解决钻井工程中高陡构造及大倾角地层防斜打快的技术难题,自主研发了捷联式自动垂直钻井系统。该系统采用动态推靠方式实现钻进过程中的主动防斜、纠斜,其中捷联式稳定平台是该系统的核心。该系统主要由基于旋转基座的测量短节、井下发电机、无刷力矩电机、旋转变压器和防斜纠斜执行机构等组成。在稳定平台的控制下,力矩电机驱动执行机构中的盘阀对过流的钻井液进行控制,利用活塞驱动翼肋推靠井壁,产生具有纠斜作用的侧向推靠力,以实现防斜、纠斜功能。宁深1井的现场试验证明,捷联式自动垂直钻井系统工作原理正确,结构可靠,能够在主动、适时防斜的同时,有效释放钻压,提高钻速。该系统...
Cited13Views1
13
1
BibtexChatPaperRate
岩石可钻性是钻头选型、提高钻井效率的基础,利用测井资料预测岩石可钻性是行之有效的手段。通过室内试验,重点研究岩性、密度和泥质含量对岩石可钻性的影响规律,在已有的可钻性与声波时差关系模型基础上, 考虑不同岩石岩性、密度和泥质含量对其可钻性级值的影响,建立了新的岩石可钻性综合预测模型。经验证,该模型预测精度较高,能满足工程需要。
Cited14Views14
14
14
BibtexChatPaperRate
介绍了WJK跨隔封隔器的封隔原理,并与传统跨隔封隔器进行了对比.在鄂深4井中的测试应用效果表明,WJK跨隔封隔器具有测试时间短、效率高、成本低等优点,特别是不怕遇阻坐封,提高了测试成功率.
Cited22Views2
22
2
BibtexChatPaperRate
钻前对水层的准确预测是气体钻井顺利实施的一个难题,需要解决以下几个问题:地层流体类型的判断、地层物性的解释、地层压力的解释和出水量的计算。提出利用深浅双侧向电阻率测井等来判断地层的流体类型,利用声波、密度、中子测井来解释出水地层的孔隙度,结合束缚水饱和度的解释进一步解释地层的渗透率,通过建立正常地层压实趋势线的方法来预测地层压力,最后结合渗流力学的产量公式实现对出水的定量预测。玉门青西地区和长庆苏里格地区的应用表明,采用该预测技术预测的结果和现场实际情况吻合,说明该预测技术具有较高的工程应用价值。
Cited7Views5
7
5
BibtexChatPaperRate
针对目前常用的多目标决策方法多存在缺点的现状,进行了密切值法在煤层气井井型优选中的应用研究。对国内外煤层气井常用的射孔压裂直井、U形水平井、V形水平井和羽状水平井4种井型,以数值模拟为手段,利用Eclipse软件进行了产能预测,并在此基础上进行了经济评价,然后综合考虑累计产气量、净现值、投资回收期、内部收益率和钻井风险系数等5项评价指标,应用密切值法优选了延川南区块煤层气井井型。产能预测和经济评价结果表明,该区块羽状水平井优势明显,15年累计产气量达5.058×108 m3,高于其他井型;净现值1.21亿元,是其他井型的5~11倍;投资回收期3.96年,...
Cited23Views13
23
13
BibtexChatPaperRate
为使潜孔钻头布齿更加合理及为钻头结构改进提供理论依据,达到提高潜孔钻头破岩效率、延长其使用寿命的目的,需要了解潜孔钻头端面切削齿的载荷分布。为此,建立了平面、凸面和凹面3种端面形式的潜孔钻头三维模型,以显式动力分析软件ANSYS/LS‐DYNA中常用的H‐J‐C模型为材料模型,并利用H‐J‐C模型中的等效屈服强度、压力、积累损伤等函数对潜孔钻头的破岩过程进行仿真,分析不同齿圈上切削齿的载荷状态,并将切削齿载荷分解到轴向、径向及切向3个方向,运用控制变量的方法对3种不同端面形式潜孔钻头的切削齿进行力学分析。研究结果表明:凹面潜孔钻头的轴向载荷峰值最大且径向...
Cited0Views6
0
6
BibtexChatPaperRate
徐闻X3井是中国石化的一口重点探井,设计井深5 658 m,设计最大井斜角为34.67°,预计井下温度高达184℃。该地区涠洲组地层的泥岩井段易缩径和垮塌,流沙港组的硬脆性黑色泥岩易垮塌。针对井深、井下温度高、地层不稳定、大尺寸长裸眼井段井眼净化困难等多项钻井液技术难点开展了抗高温钻井液室内研究,利用正交试验方法和滚动老化试验对多种抗高温处理剂进行优选,对优选出的钻井液处理剂进行配伍试验,优化出了抗高温钻井液配方。在180℃温度下,对该抗高温钻井液的高温稳定性能及二开转三开的钻井液的配伍性能进行了评价,结果表明,该钻井液高温性能稳定,二开转三开钻井液性能...
Cited2Views9
2
9
BibtexChatPaperRate
川西须家河组2段气藏属于低渗低孔致密深层气藏,地层压力和破裂压力高。破裂压力影响因素虽然十分复杂,但岩石力学特征作为其中一种直接影响因素,也是十分重要的。通过实验室常规岩石密度孔隙度测定、三轴强度试验和钻井液对岩石变形和破裂特性影响等破裂模拟试验数据,得知须2段岩石抗压强度、弹性模量和泊松比都比较大,岩石经钻井液浸泡后,塑性有所增加,直接使水平应力增大,从而增大了破裂压力值。破裂试验结果对研究区储层压裂改造具有重要的指导意义。
Cited3Views5
3
5
BibtexChatPaperRate
针对超短半径水平井钻井存在的造斜段井眼曲率大于10°/m、常规钻具无法顺利通过大曲率造斜段、筛管完井困难等技术难题,大庆油田成功研制了旋转自封器、139.7mm导向锚定系统、多功能导向管、高强度柔性钻杆、特制117.5mm三牙轮钻头等工具,形成了一套较为完善的超短半径水平井钻井技术。该技术采用纯机械造斜原理,不需弯螺杆等动力钻具即可完成3.2m曲率半径的造斜段施工,造斜能力达到(15°~20°)/m;高强度柔性钻杆的应用确保了井下钻具组合顺利通过大曲率造斜段及水平段的稳斜钻进;并实现117.5mm井眼防砂筛管完井,满足后续修井作业要求。自2009年...
Cited22Views5
22
5
BibtexChatPaperRate