基本信息
浏览量:4369

个人简介
Current Research Programs
Trustworthy Network Science: As the use of machine learning (ML) algorithms in network science grows, so do the issues of explainability, transparency, fairness, robustness, etc. We address issues of trustworthy ML in network science.
Just Machine Learning: ML systems are not islands. They are part of broader complex systems. To understand and mitigate the risks and harms of using ML, we remove our optimization blinders and study the broader complex systems in which ML systems operate.
Trustworthy Network Science: As the use of machine learning (ML) algorithms in network science grows, so do the issues of explainability, transparency, fairness, robustness, etc. We address issues of trustworthy ML in network science.
Just Machine Learning: ML systems are not islands. They are part of broader complex systems. To understand and mitigate the risks and harms of using ML, we remove our optimization blinders and study the broader complex systems in which ML systems operate.
研究兴趣
论文共 201 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
ARTIFICIAL INTELLIGENCE (2025)
NATURE COMPUTATIONAL SCIENCEno. 1 (2024)
CoRR (2024)
引用0浏览0EI引用
0
0
Ayan Chatterjee,Babak Ravandi, Naomi H. Philip, Mario Abdelmessih, William R. Mowrey, Piero Ricchiuto, Yupu Liang, Wei Ding, Juan C. Mobarec,Tina Eliassi-Rad
crossref(2024)
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATAno. 2 (2024)
加载更多
作者统计
#Papers: 201
#Citation: 11741
H-Index: 38
G-Index: 107
Sociability: 6
Diversity: 2
Activity: 53
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn