经验模态分解在桥梁检测中的应用
Modern Transportation Technology(2009)
Materials & Structural Engineering Department
Abstract
文章介绍了经验模态分解(EMD)的原理、特点及其应用,编制了EMD算法程序并验证了程序的正确性,最后采用EMD方法对某桥梁基于环境激励条件下的实际信号进行分解,结果表明,该方法能有效对信号进行分解,是一种无需预设带宽的自适应高通滤波方法,适用于结构模态参数识别。
MoreTranslated text
Key words
empirical mode decomposition,signal analysis,Hilbert transform,mode parameter identification
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Multi-filtering and Joint Denoising of Bridge Deformation Data Monitored by GNSS-RTK
Bulletin of Surveying and Mapping 2020
被引用1
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest