WeChat Mini Program
Old Version Features

PAD: Performance Anomaly Detection in Multi-server Distributed Systems

2014 IEEE 7th International Conference on Cloud Computing(2014)

Indiana Univ Purdue Univ | Microsoft Res

Cited 49|Views90
Abstract
Multi-server distributed systems are becoming increasingly popular with the emergence of cloud computing. These systems need to provide high throughput with low latency, which is a difficult task to achieve. Manual performance tuning and diagnosis of such systems, however, is hard as the amount of relevant performance diagnosis data is large. To help system developers with performance diagnosis, we have developed a tool called Performance Anomaly Detector (PAD). PAD combines user-driven navigation analysis with automatic correlation and comparative analysis techniques. The combination results in a powerful tool that can help find a number of performance anomalies. Based on our experience in applying PAD to the Orleans system, we discovered that PAD was able to reduce developer time and effort detecting anomalous performance cases and improve a developer's ability to perform deeper analysis of such behaviors.
More
Translated text
Key words
Performance Diagnostics,Anomaly Detection,Performance Bottlenecks,Distributed Systems,Orleans
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined