WeChat Mini Program
Old Version Features

New Advances in the Gaussian-process Approach to Pulsar-Timing Data Analysis

Physical Review D(2014)SCI 2区

CALTECH

Cited 88|Views8
Abstract
In this work we review the application of the theory of Gaussian processes to the modeling of noise in pulsar-timing data analysis, and we derive various useful and optimized representations for the likelihood expressions that are needed in Bayesian inference on pulsar-timing-array datasets. The resulting viewpoint and formalism lead us to two improved parameter-sampling schemes inspired by Gibbs sampling. The new schemes have vastly lower chain autocorrelation lengths than the Markov Chain Monte Carlo methods currently used in pulsar-timing data analysis, potentially speeding up Bayesian inference by orders of magnitude. The new schemes can be used for a full-noise-model analysis of the large datasets assembled by the International Pulsar Timing Array collaboration, which present a serious computational challenge to existing methods.
More
Translated text
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined