Chrome Extension
WeChat Mini Program
Use on ChatGLM

Comparing Genetic Variants Detected in the 1000 Genomes Project with SNPs Determined by the International HapMap Consortium

Chemico-Biological Interactions(2015)SCI 2区SCI 3区

National Center for Toxicological Research | Thomson Reuters

Cited 22|Views42
Abstract
Single-nucleotide polymorphisms (SNPs) determined based on SNP arrays from the international HapMap consortium (HapMap) and the genetic variants detected in the 1000 genomes project (1KGP) can serve as two references for genomewide association studies (GWAS). We conducted comparative analyses to provide a means for assessing concerns regarding SNP array-based GWAS findings as well as for realistically bounding expectations for next generation sequencing (NGS)-based GWAS. We calculated and compared base composition, transitions to transversions ratio, minor allele frequency and heterozygous rate for SNPs from HapMap and 1KGP for the 622 common individuals. We analysed the genotype discordance between HapMap and 1KGP to assess consistency in the SNPs from the two references. In 1KGP, 90.58% of 36,817,799 SNPs detected were not measured in HapMap. More SNPs with minor allele frequencies less than 0.01 were found in 1KGP than HapMap. The two references have low discordance (generally smaller than 0.02) in genotypes of common SNPs, with most discordance from heterozygous SNPs. Our study demonstrated that SNP array-based GWAS findings were reliable and useful, although only a small portion of genetic variances were explained. NGS can detect not only common but also rare variants, supporting the expectation that NGS-based GWAS will be able to incorporate a much larger portion of genetic variance than SNP arrays-based GWAS.
More
Translated text
Key words
heterozygous rate,minor allele frequency,transition,transversion,genotype discordance,genomewide association studies
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
All J. Marian
2012

被引用135 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest