Chrome Extension
WeChat Mini Program
Use on ChatGLM

Expression of Interest: A Muon to Electron Conversion Experiment at Fermilab

mag(2007)

Cited 23|Views17
Abstract
We are writing this letter to express our interest in pursuing an experiment at Fermilab to search for neutrinoless conversion of muons into electrons in the field of a nucleus, which is a lepton flavor-violating (LFV) reaction. The sensitivity goal of this experiment, improving on existing limits for this process by more than a factor of 10000, is very similar to that of previous experiments that have been proposed but never built. It would provide the most sensitive test of LFV, a unique and essential window on new physics unavailable at the high energy frontier. We present a conceptual scheme that would exploit the existing Accumulator and Debuncher rings to generate the required characteristics of the primary proton beam. The proposal requires only modest modifications to the accelerator complex after including those already planned for the NOvA experiment, with which this experiment would be fully compatible. The search for lepton flavor violation (LFV) has long played an important role in the evolution of our understanding of electroweak interactions. The neutrinoless conversion of a muon to an electron in the field of a nucleus is a particularly interesting example of an LFV process involving charged leptons. In the Standard Model, suchmore » conversions would take place via loop diagrams involving virtual neutrino mixing, at a rate far below the threshold of any currently conceivable experiment. Indeed, any detectable signal would be a definite indication, albeit indirect, of new dynamics at multi-TeV energy scales. Enhanced rate for this process is an almost universal feature of beyond the Standard Model physics, and the fact that such a process has not been observed has constrained or eliminated many models [1]. While it is widely believed that new physics will appear at LHC energies, the LHC is not well-equipped to study LFV directly. An often-quoted example is in the case of supersymmetry. The LHC will probe slepton masses, but it cannot compete with muon decay experiments in constraining the slepton mixing angles. Sensitive searches for rare or forbidden leptonic and semi-leptonic LFV processes, especially those involving charged leptons, are essential for the comprehensive characterization of new high energy physics. While there are several potential reactions that can be used to probe LFV, muon to electron conversion has the remarkable feature that it does not require the coincidence of two final-state particles. The spectacular signature is a single conversion electron of well-defined energy, separated from most of the sources of background. As a result, very high muon data rates can be handled and an unusually sensitive search for LFV becomes feasible. Indeed, at the level of sensitivity discussed below, a large class of supersymmetric models would predict 100's of conversion events. Additionally, compositeness and Z{prime} models would be probed at the multi-TeV scale in a manner complementary to direct LHC searches. Lepto-quarks would be probed at the 3000 TeV scale. Muon to electron conversion is therefore sensitive to many new physics scenarios at energy scales that cannot be probed by direct searches using other foreseeable accelerators.« less
More
Translated text
Key words
new physics,beyond the standard model,standard model,high energy physics
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点:这篇论文概述了在费米实验室进行的一个关于μ到e转换的实验的兴趣表达。

方法:该实验计划使用新型束流线和初始设计的实验室设备来进行。

实验:该实验计划使用一个名为Mu2e的数据集,并预计能够获得前所未有的精确性和灵敏度的结果。