Low-energy Electron (0-100Ev) Interaction with Resists Using LEEM
SPIE Proceedings Extreme Ultraviolet (EUV) Lithography VI(2015)
Leiden Univ
Abstract
Extreme Ultra Violet (EUV) lithography is a next generation lithographic technique using 13.5 nm wavelength light (91.7eV photon energy) to define sub-20 nm features. This high energy radiation generates lower energy electrons (LEEs) after being absorbed. The mean free path of LEEs increases rapidly below ca. 30 eV allowing them to migrate several nanometers from their point of origin. As LEEs can still have sufficient energy to react with the surrounding resist, this may give rise to pattern blurring, posing a challenge for sub 10 nm features. Here, we introduce Low Energy Electron Microscopy (LEEM) as an extremely useful technique to investigate the interactions of LEEs with EUV resists. Using LEEM we can expose the resist with precise electron energies and doses. We also report the initial results of LEE exposures on poly(methyl methacrylate) PMMA. We have studied the LEE-PMMA interaction depth as a function of electron energy; a distinct exposure threshold is found at ~15 eV, below which the resist responds only very weakly to electron exposure.
MoreTranslated text
Key words
EUV lithography,Low Energy Electrons,LEEM,Resist interaction
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined