WeChat Mini Program
Old Version Features

A Systematic Practice of Judging the Success of A Robotic Grasp Using Convolutional Neural Network

THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE(2017)

Cent China Normal Univ

Cited 0|Views13
Abstract
In this abstract, we present a novel method using the deep convolutional neural network combined with traditional mechanical control techniques to solve the problem of determining whether a robotic grasp is successful or not. To finish the task, we construct a data acquisition platform capable of robot arm grasping and photo capturing, and collect a diversity of pictures by adjusting the shape and posture of the objects and controlling the robot arm to move randomly. For the purpose of validating the generalization capability, we adopt a stochastic sampling method based on cross validation to test our model. The experiment shows that, with an increasing number of shapes of objects involved in training, the network can identify new samples in a more accurate and steadier way. The accuracy rises from 89.2% when we use only one category of shape for training to above 99.7% when we use 17 categories for training.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined