WeChat Mini Program
Old Version Features

A MAC Based Excitation Frequency Increasing Method for Structural Topology Optimization under Harmonic Excitations

International Journal for Simulation and Multidisciplinary Design Optimization(2017)

Laboratory of Engineering Simulation & Aerospace Computing-ESAC

Cited 5|Views13
Abstract
This work is focused on the topology optimization of structures that are subjected to harmonic force excitation with prescribed frequency and amplitude. As an important objective of such a design problem, the natural resonance frequency of the structure is driven far away from the prescribed excitation frequency for the purpose of avoiding resonance and reducing the vibration level. Therefore when the excitation frequency is higher than the natural resonance frequency of the structure, the natural resonance frequency will decrease, then the optimum topology configuration will be distorted with large amount of gray elements. A MAC (Modal Assurance Criteria) based excitation frequency increasing method is proposed to obtain a desired configuration. MAC is adopted here to track the natural resonance frequency which can provide the baseline reference for the current excitation frequency during the optimum iterative procedure. Then the excitation frequency increases progressively up to its originally prescribed value. By means of numerical examples, the proposed formulation can generate effective topology configurations which can avoid resonance.
More
Translated text
Key words
Topology optimization,Harmonic response,Resonant mode shape,Distorted configuration,MAC
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined