A Random Forest Method to Forecast Downbursts Based on Dual-Polarization Radar Signatures
Remote Sensing(2019)
Univ Alabama
Abstract
The United States Air Force’s 45th Weather Squadron provides wind warnings, including those for downbursts, at the Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC). This study aims to provide a Random Forest model that classifies thunderstorms’ downburst and null events using a 35-knot wind threshold to separate these two categories. The downburst occurrence was assessed using a dense network of wind observations around CCAFS/KSC. Eight dual-polarization radar signatures that are hypothesized to have physical implications for downbursts at the surface were automatically calculated for 209 storms and ingested into the Random Forest model. The Random Forest model predicted null events more correctly than downburst events, with a True Skill Statistic of 0.40. Strong downburst events were better classified than those with weaker wind magnitudes. The most important radar signatures were found to be the maximum vertically integrated ice and the peak reflectivity. The Random Forest model presented a more reliable performance than an automated prediction method based on thresholds of single radar signatures. Based on these results, the Random Forest method is suggested for continued operational development and testing.
MoreTranslated text
Key words
downbursts,dual-polarization radar,Random Forest,statistical learning
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined