Multicolorfully Probing Intramolecular G-Quadruplex Tandem Interface
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY(2020)
Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsInstitute of Physical ChemistryCollege of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaZhejiang321004China
Abstract
A long guanine-rich oliogonucleotide sequence can form multiple G-quadruplex (G4) tandem individuals in a single molecule with internal G4-G4 (inG4-G4) interfaces. The interface can exist at the stacked (s-inG4-G4) or unstacked (us-inG4-G4) state, dependent of the G4 conformation and environment. Because of the vital bioactivity of the G4 interface state, there is a great demand for developing a reliable multicolor fluorescence method to identify the interface state using a fluorophore that can emit at the individual wavelength for a specific interface. Herein, we found that a porphyrin with four dihydroxyphenyl substituents (OH2PP) can multicolorfully recognize the s-inG4-G4 dimer interface against the us-inG4-G4 dimer one. The s-inG4-G4 dimer cause significant red shifts in the excitation and emission bands of OH2PP in contrast to the us-inG4-G4 dimer and G4 monomers. OH2PP adopts a 1:1 binding mode with the s-inG4-G4 dimer, whereas a 2:1 binding mode occurs to the us-inG4-G4 dimer. The limit of detection (LOD) for the s-inG4-G4 structure is about tens of nM level. The observed binding dependence of OH2PP on the linker length between the G4 individuals suggests the interface binding with the s-inG4-G4 dimer. Deformation of the porphyrin macrocycle within the s-inG4-G4 interface confinement most likely contributes to the multicolorful response with the hyperporphyrin effect. Our work demonstrates that OH2PP is a promising fluorophore to fluorescently recognize the G4 multimer with an ideal interface-sensitive multicolor response.
MoreTranslated text
Key words
G-quadruplex,DNA,Porphyrin,Multicolor fluorescence,Tandem interface,Selectivity
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined