WeChat Mini Program
Old Version Features

Challenges in Scientific Data Communication from Low-mass Interstellar Probes

International Journal of Clinical Oncology(2020)SCI 3区SCI 4区

Univ Calif Berkeley | Univ Calif Santa Barbara | Swinburne Univ Technol

Cited 12|Views13
Abstract
An optical downlink for the return of scientific data from space probes at interstellar distances is studied. The context is probes moving at relativistic speed using a terrestrial directed-energy beam for propulsion, necessitating very low mass probes. Achieving simultaneous communication from a swarm of probes launched at regular intervals to a target at the distance of Proxima Centauri is addressed. The analysis focuses on fundamental physical and statistical communication limitations on downlink performance rather than a concrete implementation. Transmission time/distance and probe mass are chosen to achieve the best data latency versus volume trade-off. Challenges in targeting multiple probe trajectories with a single receiver are addressed, including multiplexing, parallax, and target-star proper motion. Constraints on transmit aperture size make a compelling argument in favor of free-space optical communications, and this is the assumed approach for our baseline analysis. Relevant sources of background radiation, including cosmic, atmospheric, and receiver dark count, are identified and estimated. Direct detection enables high photon efficiency and incoherent aperture combining. A novel burst pulse-position modulation (BPPM) beneficially expands the optical bandwidth and ameliorates receiver dark counts. A canonical receive optical collector combines minimum transmit power with constrained swarm-probe coverage. Theoretical limits on reliable data recovery and sensitivity to the various BPPM model parameters are applied, including a wide range of total collector areas. Significant near-term technological obstacles are identified. Enabling innovations include a high peak-to-average power ratio, a large source extinguishing factor, the shortest atmosphere-transparent wavelength to minimize target-star interference, adaptive optics for atmospheric turbulence, very selective bandpass filtering (possibly with multiple passbands), very low dark count single-photon superconducting detectors, and very accurate attitude control and pointing mechanisms.
More
Translated text
Key words
Exoplanets,Exoplanet astronomy,Deep space probes,Flyby missions,Space probes
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
N ABRAMSON
1994

被引用310 | 浏览

2011

被引用60 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest