Combining Choice and Response Time Data: A Drift-Diffusion Model of Mobile Advertisements
Management Science(2024)SCI 2区
Univ Texas Dallas | CALTECH | Univ Toronto
Abstract
Endogenous response time data are increasingly becoming available to applied researchers of economic choices. However, the usefulness of such data for preference estimation is unclear. Here, we adapt a sequential sampling model—previously validated to jointly explain subjects’ choices and response times in laboratory experiments—to model users’ responses to video advertisements on mobile devices in a field setting. Our estimates of utility correlate positively with out-of-sample measures of ad engagement, thus providing external validation of the value of incorporating endogenous response time information into a choice model. We then use the model estimates to assess the effectiveness of manipulating attention toward an advertisement at the beginning of a decision. Counterfactual simulations predict that making an ad “nonskippable” (requiring users to watch some portion of the ad)—as is the practice of some online platforms (e.g., YouTube)—generates only modest increases in click-through rates and revenue. This paper was accepted by David Simchi-Levi, behavioral economics and decision analysis. Funding: R. Webb work was supported by Social Sciences and Humanities Research Council [Grant 430-2019-00246]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2023.4738 .
MoreTranslated text
Key words
mobile advertising,attention,drift-diffusion model,response times,sequential sampling models
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
JOURNAL OF MARKETING RESEARCH 2024
被引用0
JOURNAL OF RETAILING AND CONSUMER SERVICES 2024
被引用1
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES 2025
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper