WeChat Mini Program
Old Version Features

临床回报CD8+T细胞结果与CD8 low T和CD8 high T细胞亚群的相关性研究

Chinese Journal of Laboratory Medicine(2018)

Cited 0|Views14
Abstract
目的 探讨临床全自动分析平台回报CD8+T细胞结果与CD8low T、CD8high T细胞亚群结果的关系.方法 采用横断面研究,收集2015年12月至2016年9月中国医科大学附属第一医院临床患者及健康人群淋巴细胞亚群流式检测数据1316例,其中恶性肿瘤患者287例,自身免疫病患者389例,健康人320名,HIV感染者320例,得到全自动分析平台回报的CD8+T细胞结果.流式检测数据同时采用FlowJo软件画门,分析上述患者CD8lowT、CD8highT细胞亚群结果,与临床全自动分析平台回报的CD8+T细胞结果进行比较.结果 不同疾病患者临床回报CD8+T细胞结果与CD8high T细胞的结果趋势一致,与CD8lowT细胞结果不完全一致,差异表现为HIV感染者CD8lowT细胞明显低于健康人(56.2±42.0,68.8±45.9,个/μl,P<0.001),与临床回报CD8+T细胞结果趋势不同.临床回报的CD8+T细胞结果与CD8highT细胞、CD8lowT细胞均具有统计学相关性,其与CD8highT的相关系数明显高于CD8low T细胞.HIV感染者CD8low T细胞与CD4+T细胞绝对计数呈正相关趋势(r=0.204,P<0.001),抗病毒治疗后CD8low T明显高于未治疗组(58.3±43.9,42.9±26.5,个/μl,P<0.001),治疗2年以上患者中,CD4<500个/μl组中CD8low T细胞明显低于CD4>500个/μl组(50.1±47.0,66.3±46.6,个/μl,P<0.001).结论 临床回报CD8+T细胞结果与CD8high T细胞结果趋势一致,与CD8lowT细胞结果存在差异.HIV感染者CD8low T细胞明显减少,抗病毒治疗可有效重建CD8low T细胞.
More
Translated text
Key words
CD8-positive T-lymphocytcs,T-lymphocytes subsets,Flow cytometry,Autoanalysis
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined