WeChat Mini Program
Old Version Features

快速成型模型在跟骨骨折诊断分型中的辅助指导作用

Chinese Journal of Orthopaedic Trauma(2015)

Cited 3|Views10
Abstract
目的 探讨快速成型(RP)模型在跟骨骨折诊断分型中的指导作用. 方法 2010年1月至2013年1月采用RP技术在术前对38例(41侧)患者制备了跟骨骨折模型,其中3例为双侧跟骨骨折,男27例(30个跟骨),女11例(11侧);年龄21 ~76岁,平均34.4岁;跌倒损伤7例,高处坠落伤23例,交通伤8例.所有患者均常规摄跟骨轴位和侧位X线片,行跟骨三维螺旋CT扫描,将数据转换STL格式文件;再将所得STL数据输入RP机,制作出与实体1∶1等大的跟骨骨折模型.将通过跟骨RP骨折模型上所确定的骨折Sanders分型与常规CT确定的分型进行对比. 结果 本组41侧跟骨中,依据CT数据进行Sanders分型:Ⅱ型14侧,Ⅲ型16侧,Ⅳ型8侧;未累及后关节面的骨折有3侧,属于Essen-Lopresti Ⅰ型.根据跟骨RP模型进行Sanders分型:Ⅱ型12侧,Ⅲ型15侧,Ⅳ型11侧.依据RP骨折模型所确定的骨折严重程度较依据CT所确定的严重程度高. 结论 对于骨折程度比较严重的跟骨骨折,RP模型可更加清晰与立体地显示骨折,对于了解跟骨骨折的发生机制、明确诊断、制定手术方案和指导预后可能具有一定指导意义.
More
Translated text
Key words
Calcaneus,Fracture,Models,anatomic,Rapid prototyping
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:该论文探讨了快速原型技术(RP)模型在跟骨骨折诊断和分类中的指导作用,提高了对骨折严重性的识别准确性。

方法】:利用RP技术,基于患者跟骨的CT数据,制作出1:1比例的跟骨骨折模型,并与传统的CT扫描结果进行分类对比。

实验】:2010年1月至2013年1月间,对38名跟骨骨折患者(共41个跟骨)进行了研究,其中包括三名双侧跟骨骨折患者。所有患者在术前都进行了轴向和侧向X射线检查以及跟骨的三维CT扫描。CT数据被转换为STL文件,供RP机器读取并制作出跟骨骨折模型。通过RP模型进行的骨折分类与基于传统CT扫描的分类结果进行了比较。结果显示,RP模型分类的骨折类型较CT扫描分类更为严重。