WeChat Mini Program
Old Version Features

Using Epidemiological Evidence to Forecast Population Need for Early Treatment Programmes in Mental Health: a Generalisable Bayesian Prediction Methodology Applied to and Validated for First-Episode Psychosis in England

British Journal of Psychiatry(2021)SCI 1区

Lentis Res

Cited 16|Views4
Abstract
Background:Mental health policy makers require evidence-based information to optimise effective care provision based on local need, but tools are unavailable.Aims:To develop and validate a population-level prediction model for need for early intervention in psychosis (EIP) care for first-episode psychosis (FEP) in England up to 2025, based on epidemiological evidence and demographic projections.Method:We used Bayesian Poisson regression to model small-area-level variation in FEP incidence for people aged 16-64 years. We compared six candidate models, validated against observed National Health Service FEP data in 2017. Our best-fitting model predicted annual incidence case-loads for EIP services in England up to 2025, for probable FEP, treatment in EIP services, initial assessment by EIP services and referral to EIP services for 'suspected psychosis'. Forecasts were stratified by gender, age and ethnicity, at national and Clinical Commissioning Group levels.Results:A model with age, gender, ethnicity, small-area-level deprivation, social fragmentation and regional cannabis use provided best fit to observed new FEP cases at national and Clinical Commissioning Group levels in 2017 (predicted 8112, 95% CI 7623-8597; observed 8038, difference of 74 [0.92%]). By 2025, the model forecasted 11 067 new treated cases per annum (95% CI 10383-11740). For every 10 new treated cases, 21 and 23 people would be assessed by and referred to EIP services for suspected psychosis, respectively.Conclusions:Our evidence-based methodology provides an accurate, validated tool to inform clinical provision of EIP services about future population need for care, based on local variation of major social determinants of psychosis.
More
Translated text
Key words
Epidemiology,psychotic disorders,schizophrenia,social functioning,outcome studies
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined