Materials Design for Artificial Pinning Centres in Superconductor PLD Coated Conductors
SUPERCONDUCTOR SCIENCE & TECHNOLOGY(2017)
Univ Cambridge
Abstract
To date the strategy for inducing pinning in REBa2Cu3O7−x (REBCO where RE = rare-earth) coated conductors has largely been empirical. Hence, we are not yet at a point where we can dial-in the compositions and process parameters to optimise pinning for particular applications having specific temperature, field, and field angle requirements. In this review, we cover the critical materials science aspects which enable the understanding, design and engineering of desired pinning centre morphologies. Our main emphasis is on in in situ epitaxial growth of REBCO films by vapour deposition. We review the optimal pinning centre morphologies which have been determined to be effective for different operation regimes. We also highlight how the interplay of thermodynamics (including epitaxial effects), film-particle interfacial strain, and kinetics determine pinning morphologies. Finally, we also briefly cover pinning in rapid ex situ, liquid assisted growth which is likely to be a necessary universal approach for applications where low cost is critical.
MoreTranslated text
Key words
materials,pinning,design,coated conductor
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined