WeChat Mini Program
Old Version Features

Impact of Intercepted and Sub-Canopy Snow Microstructure on Snowpack Response to Rain-on-snow Events under a Boreal Canopy

Cryosphere(2024)SCI 2区

Univ Laval

Cited 3|Views16
Abstract
Rain-on-snow events can cause severe flooding in snow-dominated regions. These are expected to become more frequent in the future as climate change shifts the precipitation from snowfall to rainfall. However, little is known about how winter rainfall interacts with an evergreen canopy and affects the underlying snowpack. In this study, we document 5 years of rain-on-snow events and snowpack observations at two boreal forested sites of eastern Canada. Our observations show that rain-on-snow events over a boreal canopy lead to the formation of melt–freeze layers as rainwater refreezes at the surface of the sub-canopy snowpack. They also generate frozen percolation channels, suggesting that preferential flow is favoured in the sub-canopy snowpack during rain-on-snow events. We then used the multi-layer snow model SNOWPACK to simulate the sub-canopy snowpack at both sites. Although SNOWPACK performs reasonably well in reproducing snow height (RMSE = 17.3 cm), snow surface temperature (RMSE = 1.0 °C), and density profiles (agreement score = 0.79), its performance declines when it comes to simulating snowpack stratigraphy, as it fails to reproduce many of the observed melt–freeze layers. To correct for this, we implemented a densification function of the intercepted snow in the canopy module of SNOWPACK. This new feature allows the model to reproduce 33 % more of the observed melt–freeze layers that are induced by rain-on-snow events. This new model development also delays and reduces the snowpack runoff. In fact, it triggers the unloading of dense snow layers with small rounded grains, which in turn produces fine-over-coarse transitions that limit percolation and favour refreezing. Our results suggest that the boreal vegetation modulates the sub-canopy snowpack structure and runoff from rain-on-snow events. Overall, this study highlights the need for canopy snow property measurements to improve hydrological models in forested snow-covered regions.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本研究探讨了雨夹雪事件对加拿大东部针叶林下雪包响应的影响,揭示了林下雪微结构对径流形成的调节作用,并对SNOWPACK模型进行了改进,以更好地模拟林下雪包的层状结构。

方法】:研究采用现场观测与模型模拟相结合的方法,首先记录了5年的雨夹雪事件和雪包观测数据,然后利用SNOWPACK模型进行模拟,并对模型进行了改进。

实验】:在两个针叶林地区进行了实验,使用的数据集为现场观测的5年雨夹雪事件和雪包数据,结果表现为改进后的模型能更好地模拟由雨夹雪事件引起的融冻层,并减少了雪包径流。