氮化温度对直接氮化法制备氮化硅纤维材料显微结构的影响
China's Refractories(2020)
Abstract
用工业硅粉为原料,首先通过发泡法结合凝胶注模制备硅的多孔坯体,然后高温氮化制备氮化硅纤维材料,借助XRD和SEM研究氮化温度对该材料显微结构的影响.结果表明:在1400℃氮化5 h,已经基本完全氮化,并且坯体在1375℃发生了剧烈的反应.氮化硅纤维主要在气孔中生长,生成的氮化硅纤维均为纳米纤维,其直径在50~250 nm,长度约10μm.随着氮化温度的升高,氮化硅纤维逐渐增多,泡沫孔壁趋于消失,孔壁的消失是由于SiO的生成.氮化硅纤维生长遵循VS和VLS机制.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined