WeChat Mini Program
Old Version Features

白云凹陷东部A井区油气输导体系及其控藏作用

Progress in Geophysics(2019)

Cited 8|Views22
Abstract
南海北部深水区白云凹陷油气资源丰富,勘探潜力巨大,白云凹陷东部目前已获得多个商业性油气发现,但是该地区油气分布较复杂,油气聚集规律仍有待深入分析.本文基于三维地震、钻井、测井和岩心分析资料,对白云凹陷东部A井区油气输导体系及其控藏作用进行了综合研究.研究表明:研究区发育断裂、不整合面和砂岩输导层三类输导体.断开层位多,长期活动的Ⅰ类断裂为油源断裂,垂向上深部主要起输导油气作用,而浅部垂向和侧向封闭性较好,主要起封堵油气的作用;断开层位少,活动时期短的Ⅱ类断裂主要起封堵油气的作用.砂岩输导层主要为Z J2段和ZJ3段砂体,输导能力强;而珠海组砂体的区域输导能力较差.T70不整合面主要为削超不整合和平行不整合.靠近洼陷的平行不整合面上、下分别为渗透性的砂岩和灰岩岩层,为油气输导层,东部隆起区的削超不整合则有利于油气聚集.分析得出:沟通白云主洼烃源岩的3号断层系发育的断面脊、ZJ2段和ZJ3段砂岩构造脊以及自西向东发育的不整合构造脊控制了油气优势运移方向,为区域油气运移的优势通道.三种输导体组合形成的复合输导体系类型决定了研究区的油气运移聚集规律:断裂与砂体组成的断-砂复合输导体系表现为断-砂耦合输导、油气近源成藏模式,油气成藏的主要层位为ZJ2段;而断裂与砂体和不整合面复合-网状输导体系则表现为断-砂-不整合-构造脊复合输导、油气远源多层系成藏模式,油气纵向上具有多层系成藏的特征.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined