近30年海南岛土壤有机质时空变异特征及成因分析
Scientia Agricultura Sinica(2019)
Abstract
[目的]土壤有机质(SOM)是评价土壤肥力和土壤碳库的重要指标.由于复杂的成土过程及人类活动的影响,SOM通常存在较强的时空变异性.研究SOM的时空变异特征可为农业种植结构调整、应对全球气候变化提供重要参考依据.[方法]以海南岛为研究区域,通过资料收集、野外调查、采样与分析获取全国第二次土壤普查(1980s)和2 01 2年0-20 cm土层SOM含量数据,首先采用随机森林模型分别对两个时期训练集41 0个、1 28个样点SOM空间分布规律进行预测,并通过验证集1 03个、32个验证点对模型精度进行验证;采用统计学方法,结合农业统计数据,研究时隔30年海南岛不同土地利用类型SOM时空变异特征,并对驱动因素进行探讨.[结果]1980s SOM含量均值为20.57 g·kg-1,呈现出从西南向东北降低的空间分布趋势,全岛SOM含量主要集中在15-20和20-30 g·kg-1两个等级,共占全岛面积的75.29%;2 01 2年SOM含量均值为15.89g·kg-1,呈现出西南和东北高,西部、南部沿海低的空间分布趋势,SOM含量主要集中在10-15和15-20 g·kg-1两个等级,共占全岛面积的78.28%,而15-20和20-30 g·kg-1两个等级占全岛面积66.04%,同1980s相比减少了9.25个百分点.[结论](1)时隔近30年,海南岛SOM含量整体呈减少趋势.2012年SOM平均含量较1980s减少了4.68 g·kg-1,减少率为22.75%.其中水田的SOM含量减少最为明显,减少了6.42 g·kg-1,减少率为27.34%;其次为园地,减少了2.65 g·kg-1,减少率为14.25%;而旱地减少量最小,为1.28 g·kg-1,减少率为8.84%;(2)水稻连作改为稻菜轮作(水田连作改为水旱轮作)、林地开垦为园地、土地利用强度加大是造成海南岛SOM含量下降的主要原因.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined