热应激条件下不同生理阶段安格斯母牛维持行为和生理生化指标的差异研究
Journal of Domestic Animal Ecology(2019)
Abstract
试验旨在研究热应激条件下不同生理阶段安格斯母牛维持行为和生理生化指标的差异,以期了解安格斯牛耐热性能,为建立相应的饲养管理方案提供理论依据.随机选取分娩后2~3个月的空怀哺乳(LN)组、干奶1~2个月的空怀(NN)组和妊娠6~7个月(GE)组黑安格斯母牛各4头,监测其在热应激条件下的生理常值、维持行为和血清生化指标.结果 表明:(1)在热应激条件下,3组间呼吸频率和直肠温度差异不显著(P>0.05).(2)GE组每个反刍周期食团数显著高于LN组(P<0.05),GE组和NN组的采食时间都显著高于LN组(P<0.05),而站立/游走时间显著低于LN组(P<0.05),GE组和LN组的卧息时间显著高于NN组(P<0.05).(3)与NN组比较,GE组的血清CK、IgA、T4、UN浓度显著降低(P<0.05);与LN组比较,GE组除血清UN显著降低(P<0.05)外,血清ALT、AST、CK、TP、GLU、T3、T4、IgG、IgA两组间差异均不显著(P>0.05);NN组血清TP和T4显著高于LN组(P<0.05),血清ALT、AST、CK、UN、GLU、T3、IgG、IgA两组间差异均不显著(P>0.05).结果 提示,热应激条件下,不同生理阶段安格斯母牛均表现出良好的耐热性能,且妊娠组母牛在采食行为、反刍行为、维持肌细胞功能和蛋白质代谢方面优于空怀组.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2004
被引用211 | 浏览
2013
被引用23 | 浏览
2008
被引用526 | 浏览
2014
被引用23 | 浏览
2016
被引用8 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper