WeChat Mini Program
Old Version Features

贲门癌切除术后围术期死亡原因分析及术后并发症logistic回归分析及风险预测模型的建立

图尔霍·麦图松,张昌明

Guangdong Medical Journal(2017)

Cited 3|Views15
Abstract
目的 探讨并分析贲门癌围术期死亡原因及术后并发症危险因素,建立logistics回归模型.方法 收集305例贲门癌切除术患者的临床资料,根据围术期及住院期间术后有无发生并发症分为两组,将33个可能对贲门癌术后发生并发症有相关影响的有代表性的因素进行回顾性分析,通过计算机用logistic回归模型分析术后并发症相关危险因素,进行单因素、多因素、相关性及共线性检验分析,并建立风险预测模型,总结实际意义.结果 305例贲门癌中手术死亡7例,手术死亡率2.3%.死亡原因:循环系统并发症2例(包括心源性休克并急性冠脉综合征1例,心源性猝死1例,占死亡组的28.60%), 呼吸系统并发症 2例 (包括肺部感染、重症肺炎、肺不张等引起的呼吸衰竭2例,占死亡组的28.60%),呼吸系统与循环系统并发症并存3例(包括呼吸循环衰竭2例,呼吸衰竭并心肌梗死1例,占死亡组的42.80%),吻合口瘘1例(14.30%),乳糜胸1例(14.30%).单因素logistic回归分析显示,在所分析的33个因素中,有9个因素与贲门癌切除术后发生并发症有关,分别为术前合并心脏病、病变部位、手术时长、手术切除范围、手术年代、术中输血、术中出血量、肠内营养时间、重症监护室(ICU)治疗时间,差异有统计学意义(P<0.05).多因素logistic回归分析提示:术前合并心脏病、手术切除范围、术中输血、肠内营养时间等指标有统计学意义(P<0.05),术前合并心脏病为独立危险因素,术中输血为保护因素,并进入logistic回归方程,获得预测模型P=1/(1+e(18.256-1.079X33+0.963X19-0.788X26+0.725X30)).结论 合并心脏病的贲门癌患者手术评估需严格掌握,欲防止并发症发生,围术期需注意心功能的动态变化,保证心功能能够维持机体正常生理功能;手术切除范围愈大,术后并发症发生风险愈高,故术中应根据病变部位和范围在切除病变的前提下尽可能减少创伤,有助于减少术后并发症的发生;贲门癌手术创伤较大,术中予输血有助于术后减少术后并发症发生;肠内营养时间的合理性与科学性能影响围术期并发症发生率,故需结合具体病情开始肠内营养时间并需动态观察营养前后机体的变化.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined