WeChat Mini Program
Old Version Features

基质金属蛋白酶-2基因1306C/T多态性与前列腺癌易感性关联的Meta分析

Acta Academiae Medicinae Jiangxi(2019)

Cited 2|Views14
Abstract
目的 系统评价基质金属蛋白酶-2基因(matrix metalloproteinase 2,MMP2)基因rs243865单核苷酸多态性与前列腺癌易感性的关联.方法 检索PubMed、Embase、Medline以及中国知网、万方数据库和中国生物医学文献数据库,查找有关MMP2基因rs243865位点多态性与癌症易感性关联的病例对照研究,检索时限为建库至2018年4月1日.由2名研究者筛选文献、提取数据后,使用纽卡斯尔-渥太华量表(Newcastle-Ottawa scale,NOS)进行文献的质量评价.采用Stata 12.0软件进行Meta分析,通过敏感性分析考察结果 的稳定性、亚组分析探讨异质性来源、Begg秩相关法评价发表偏倚.结果共纳入6篇文献,合计3909例研究对象,其中前列腺癌患者1921例,健康对照1988例.Meta分析结果显示,等位基因模型T vs.C(OR=1.105,95%CI:0.994~1.227)、隐性基因模型TT vs.CT+CC(OR=1.014,95%CI:0.781~1.315)和纯合子模型TT vs.CC(OR=1.086,95%CI:0.832~1.418)中,癌症易感性差异无统计学意义;显性基因模型TT+CT vs.CC(OR=1.157,95%CI:1.017~1.317)和杂合子模型TC vs.CC(OR=1.498,95%CI:1.078~2.080)中,癌症易感性差异有统计学意义.结论 MMP2基因rs243865多态性与前列腺癌易感性相关,其中C等位基因可能是保护因素,而T等位基因可能是前列腺癌的易感因素,TC基因型可能为前列腺癌患者的风险基因型.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined