ADDING VALUE TO FIELD-BASED AGRONOMIC RESEARCH THROUGH CLIMATE RISK ASSESSMENT: A CASE STUDY OF MAIZE PRODUCTION IN KITALE, KENYA
Experimental Agriculture(2011)SCI 3区
Int Crops Res Inst Semi Arid Trop
Abstract
SUMMARY In sub-Saharan Africa (SSA), rainfed agriculture is the dominant source of food production. Over the past 50 years much agronomic crop research has been undertaken, and the results of such work are used in formulating recommendations for farmers. However, since rainfall is highly variable across seasons the outcomes of such research will depend upon the rainfall characteristics of the seasons during which the work was undertaken. A major constraint that is faced by such research is the length of time for which studies could be continued, typically ranging between three and five years. This begs the question as to what extent the research was able to ‘sample’ the natural longer-term season-to-season rainfall variability. Without knowledge of the full implications of weather variability on the performance of innovations being recommended, farmers cannot be properly advised about the possible weather-induced risks that they may face over time. To overcome this constraint, crop growth simulation models such as the Agricultural Production Systems Simulator (APSIM) can be used as an integral part of field-based agronomic studies. When driven by long-term daily weather data (30+ years), such models can provide weather-induced risk estimates for a wide range of crop, soil and water management innovations for the major rainfed crops of SSA. Where access to long-term weather data is not possible, weather generators such as MarkSim can be used. This study demonstrates the value of such tools in climate risk analyses and assesses the value of the outputs in the context of a high potential maize production area in Kenya. MarkSim generated weather data is shown to provide a satisfactory approximation of recorded weather data at hand, and the output of 50 years of APSIM simulations demonstrate maize yield responses to plant population, weed control and nitrogen (N) fertilizer use that correspond well with results reported in the literature. Weather-induced risk is shown to have important effects on the rates of return ($ per $ invested) to N-fertilizer use which, across seasons and rates of N-application, ranged from 1.1 to 6.2. Similarly, rates of return to weed control and to planting at contrasting populations were also affected by seasonal variations in weather, but were always so high as to not constitute a risk for small-scale farmers. An analysis investigating the relative importance of temperature, radiation and water availability in contributing to weather-induced risk at different maize growth stages corresponded well with crop physiological studies reported in the literature.
MoreTranslated text
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2011
被引用108 | 浏览
2011
被引用22 | 浏览
2011
被引用62 | 浏览
2013
被引用15 | 浏览
2015
被引用4 | 浏览
2014
被引用129 | 浏览
2014
被引用100 | 浏览
2015
被引用48 | 浏览
2014
被引用70 | 浏览
2015
被引用21 | 浏览
2017
被引用39 | 浏览
2018
被引用92 | 浏览
2017
被引用9 | 浏览
2020
被引用13 | 浏览
2021
被引用18 | 浏览
2021
被引用0 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话