基于QbD理念的茶碱凝胶骨架缓释片处方工艺设计与优化
China Pharmacy(2019)
Abstract
目的:基于"质量源于设计"(QbD)理念设计并优化茶碱亲水凝胶骨架缓释片(简称为"自制缓释片")的处方工艺.方法:确定稀释剂类型、片径、黏合剂性质(即不同黏合剂种类的占比)、黏合剂用量作为关键工艺参数(CPPs),将自制缓释片与市售参比制剂溶出曲线的相似因子以及其在不同时间点的累积释放度作为关键质量属性(CQAs),采用L18(34)正交表进行设计和试验;对试验结果建立二次多项式回归模型,利用Modde 12.0软件通过最优模型进行计算并获得设计空间及其可接受范围(PAR),以确定自制缓释片的最优处方工艺,并对所得工艺进行验证试验和蒙特卡洛模拟验证.结果:获得吻合度、精确度、有效性、重现性均较好的最优模型,能较好地拟合CQAs和CPPs之间的关系;进一步计算获得设计空间及其PAR值[稀释剂最优值为乳糖;片径为9.07~9.33 mm,最优值为9.20 mm;羟丙基甲基纤维素(HPMC)K4M占HPMC总量的比例为0.50~0.83,最优值为0.80;HPMC总量为0.0360~0.0413g/片,最优值为0.0387 g/片],并确定其优处方工艺为茶碱质量占比50%、HPMC K4M质量占比15.48%、HPMC K100M质量占比3.87%,其余部分使用乳糖作为稀释剂,制片后片径为9.20 mm.验证结果显示,所制备的茶碱缓释片与参比制剂具有相似的体外释放行为;模拟产生的95%以上的结果都在上、下限范围内.结论:基于QbD理念建立的茶碱缓释片处方工艺能够符合制剂设计要求,而且在PAR范围内调整CPPs所制备的产品能够符合CQAs的要求,表明QbD理念用于缓控释制剂处方工艺的设计和优化具有科学性和有效性.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined