耳蜗不全分隔畸形患儿耳蜗形态与人工耳蜗术后效果评估
Chinese Journal of Otology(2020)
Abstract
目的 1.利用影像重建技术建立标准耳蜗坐标系统,通过测量骨蜗管结构,量化分析语前聋耳蜗不全分隔畸形患儿耳蜗形态;2.评估语前聋耳蜗不全分隔畸形患儿人工耳蜗术后2年听力言语康复效果,分析不全分隔畸形耳蜗形态与术后听觉言语效果的关系.方法 收集2013年至2015年使用奥地利MED-EL公司FLEX系列人工耳蜗产品的27例语前聋伴耳蜗不全分隔畸形患儿的临床资料.将27例患儿依据耳蜗畸形种类分为不全分隔畸形I型组(IP-I组,17例)和不全分隔畸形II型组(IP-II组,10例).选取耳蜗形态正常且使用FLEX系列人工耳蜗的患儿作为对照组(对照组,17例).影像学评估实验组与对照组患儿术侧耳颞骨CT:通过影像重建骨蜗管,测量骨蜗管长度、耳蜗底转长径和宽径、耳蜗底转蜗管高度与宽度.术后两年使用听觉行为分级标准(CAP)、言语可懂度分级标准(SIR)、有意义听觉整合量表(MAIS)、有意义使用言语量表(MUSS)评估患者听觉及言语康复情况.结果 IP-I组:植入年龄为21.76±10.92月龄,骨蜗管长度20.29±4.39mm,耳蜗底转长径8.11±0.91mm,耳蜗底转宽径5.39±0.73mm,耳蜗底转蜗管高度3.10±0.94mm,耳蜗底转蜗管宽度2.55±0.91mm;术后两年CAP=5.76±1.53,SIR=3.21±1.03,MAIS=26.84±7.63,MUSS=20.84±8.23.IP-II组:植入年龄为18.2±8.94月龄,骨蜗管长度为24.35±2.92mm,耳蜗底转长径为8.58±0.55mm,耳蜗底转宽径为5.72±0.66 mm、耳蜗底转蜗管高度为2.37±0.80mm,耳蜗底转蜗管宽度为1.94±0.26mm;术后两年CAP=6.30±0.95,SIR=3.50±0.85,MAIS=28.40±5.92,MUSS=25.40±5.58;对照组:植入年龄为22.85±10.30月龄,骨蜗管长度31.19±1.88mm,耳蜗底转长径9.05±0.31mm,耳蜗底转宽径6.82±0.43mm,耳蜗底转蜗管高度1.83±0.19mm,耳蜗底转蜗管宽度为1.77±0.20mm;术后两年CAP=6.71±1.14,SIR=4.14±0.86,MAIS=30.93±6.84,MUSS=27.5±7.69.相关性分析发现各组耳蜗底转长径和宽径之间存在明显正相关(P<0.05),耳蜗底转蜗管宽度和高度之间存在明显正相关(P<0.05);IP-I组骨蜗管长度与术后CAP、SIR、MAIS、MUSS得分存在明显正相关(P<0.05);IP-II组骨蜗管长度与术后CAP、SIR、MAIS得分存在明显正相关(P<0.05),与MUSS得分无明显相关关系(P>0.05);对照组骨蜗管长度与术后CAP、SIR、MAIS、MUSS得分无相关关系(P>0.05).结论 不全分隔畸形患儿骨蜗管长度、耳蜗底转长径、耳蜗底转宽径、耳蜗底转蜗管高度、耳蜗底转蜗管宽度明显异于正常对照组;不全分隔畸形患儿耳蜗形态、耳蜗底转蜗管形态存在较大个体差异.通过术后两年CAP、SIR、MAIS、MUSS分析得知,不全分隔畸形患者听觉言语功能显著提高,且与骨蜗管长度存在明显正相关.因此术前对于不全分隔畸形患儿进行耳蜗结构测量具有重要意义.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined