WeChat Mini Program
Old Version Features

平均血小板体积/血小板计数比值预测非心源性栓塞性卒中患者的短期转归

Int J Cerebrovasc Dis(2019)

Cited 0|Views5
Abstract
目的 探讨平均血小板体积/血小板计数比值(mean platelet volume to platelet count ratio,MPV/PC)对非心源性栓塞性卒中患者短期转归的预测价值.方法 回顾性连续纳入2018年4月至2019年4月在天津医科大学第二医院神经内科住院的非心源性栓塞性卒中患者,根据出院或发病后14 d时改良Rankin量表(modified Rankin Scale,mRS)评分分为转归良好组(mRS评分0~2分)和转归不良组(mRS评分>2分).收集并比较研究对象的人口统计学数据、基线临床资料以及实验室检查,根据血常规检查结果计算M PV/PC.采用多变量logistic回归分析确定转归不良的独立预测因素.采用受试者工作特征(receiver operating characteristic,ROC)曲线评价MPV/PC对转归的预测价值.结果 共纳入急性非心源性栓塞性卒中患者596例,转归良好组391例(65.60%),转归不良组205例(34.40%).转归不良组MPV/PC显著高于转归良好组(0.06±0.08对0.04±0.03;t=-4.392,P<0.001).多变量logistic回归分析显示,MPV/PC是转归不良的独立预测因素(优势比1.088,95%可信区间1.042 ~1.137;P<0.001).ROC曲线分析显示,MPV/PC预测转归不良的最佳截断值为0.050,曲线下面积为0.772(95%可信区间0.732 ~0.812),敏感性为62.1%,特异性为81.6%,阳性预测值为86.3%,阴性预测值为92.2%.结论 MPV/PC是急性非心源性栓塞性卒中患者短期转归不良的独立预测因素,有一定预测价值.
More
Translated text
Key words
Stroke,Brain ischemia,Mean platelet volume,Platelet count,Treatment outcome,Risk factors
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined