WeChat Mini Program
Old Version Features

前列腺穿刺活检结果预测模型的建立

wf(2016)

Cited 4|Views9
Abstract
目的基于前列腺特异性抗原(PSA)等指标,建立能够预测前列腺穿刺活检结果的数学模型.方法收集2009年7月至2015年3月在解放军总医院进行前列腺穿刺活检患者的年龄、前列腺体积、游离PSA(fPSA)和总PSA(tPSA)等临床资料.所有研究对象中随机选择80%为建模组,其余20%为验证组.在建模组中利用单因素和多因素 Logistic 分析筛选出预测前列腺癌的独立性影响因素,构建回归方程,并以此为基础建立预测前列腺穿刺结果的数学模型.利用受试者工作特征(receiver operating characteristic,ROC)曲线评估该模型对前列腺癌的诊断价值,并与临床常用的 PSA 及其相关参数比较诊断价值的差异.结果选取资料完整且 tPSA 100 ng/ml以下的患者纳入研究,共958例.其中建模组767例(tPSA 4~20 ng/ml者587例),验证组191例.在建模组中,将所有指标纳入单因素和多因素 Logistic 回归分析,发现年龄、tPSA 和前列腺体积是前列腺癌独立的预测因素.将所有指标(包括 fPSA)纳入回归方程,构建数学模型Y=-4.765+0.074×(年龄)+0.057×(tPSA)+0.052×(fPSA)-0.029×(前列腺体积).在建模组和验证组中, ROC曲线分析显示该模型预测前列腺癌的 ROC 曲线下面积高于 tPSA、f/tPSA 和 PSA 密度.取Y=-0.076,即约登指数最大值作为本模型最佳临界值,预测前列腺癌的灵敏度为76.2%、特异度为76.6%、阳性预测值76.5%、阴性预测值76.3%.结论本预测模型与单独应用PSA及其相关参数相比具有更高的诊断价值,并且可以在不增加患者检查项目的前提下提高预测前列腺癌的能力.
More
Translated text
Key words
Prostate cancer,Prostate specific antigen,Model
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined