PDW、RDW和MCV在评估脓毒症严重程度及预后中的价值
Journal of practical shock(2018)
Abstract
目的 探讨血小板体积分布宽度(PDW)、红细胞体积分布宽度(RDW)、平均红细胞体积(MCV)在脓毒症患者严重程度和预后中的评估作用.方法 纳入脓毒症患者171例,将其按照病情严重程度分为脓毒症组103例,脓毒症休克组68例,纳入同期非脓毒症患者94例.根据患者28天生存情况分为生存组和死亡组.记录患者入院第一个24h的血常规、PCT、Lac,24h情况最差急性生理学和慢性健康状态评分系统Ⅱ (APACHE Ⅱ)评分和序贯器官衰竭评分(SO-FA).比较对照组与脓毒症组及各亚组间Lac、PDW、RDW、MCV、PCT、APACHEⅡ、SOFA以及PDW、RDW、MCV联合指标的差异.受试者工作特征曲线分析Lac、PDW、RDW、MCV、PCT、APACHEⅡ、SOFA以及PDW、RDW、MCV联合在脓毒症严重程度及预后中的价值.结果 1.脓毒症Lac、PDW、RDW、MCV、PCT、APACHEⅡ、SOFA、28d生存率均高于对照组,差异有统计学意义(P< 0.05);2.随着病情严重程度加重,脓毒症患者Lac、PDW、RDW、MCV、PCT、APA-CHEⅡ、SOFA、PDW+RDW+MCV、28d病死率呈递增趋势,脓毒症休克组各指标明显高于脓毒症组;PDW +RDW +MCV联合的ROC曲线下面积为0.850,大于PCT (0.788),相当于APACHE评分(0.850),小于SOFA评分(0.958);3.脓毒症死亡组患者Lac、PDW、RDW、MCV、PCT、APACHEⅡ、SOFA、PDW+RDW+MCV明显高于生存组,PDW+RDW+MCV的联合ROC曲线下面积为0.950,大于PCT (0.844)、APACHEⅡ评分(0.924)及SOFA评分(0.934).结论 1.PDW、RDW、MCV在脓毒症患者严重程度及预后具有评估意义;2.PDW、RDW、MCV联合在评估脓毒症严重程度方面,效果可能与APACHEⅡ评分相当;在评估脓毒症预后方面,效果可能与SOFA评分相当.
More求助PDF
上传PDF
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined