WeChat Mini Program
Old Version Features

参附注射液对严重脓毒症患者器官功能影响的临床观察

CHINESE JOURNAL OF INTEGRATED TRADITIONAL AND WESTERN MEDICINE IN INTENSIVE AND CRITICAL CARE(2012)

Cited 6|Views9
Abstract
目的 观察参附注射液对严重脓毒症患者器官功能的影响.方法 采用前瞻性研究方法,将2009年5月至2011年4月入住本院重症监护病房(ICU)的60例严重脓毒症患者按随机原则分为治疗组(30例)和对照组(30例),两组均给予常规治疗,治疗组在常规治疗的基础上加用参附注射液100 ml 静脉泵入,每日1次,疗程为7 d.于患者入ICU时(治疗前)及治疗7 d取静脉血,检测重要器官生化指标的变化;观察14 d内再次复苏率及应用血管活性药物情况.结果 治疗组再次复苏率(10.0%)、血管活性药物使用率(60.0%)均明显低于对照组(36.7%、86.7%,均P<0.05).两组治疗后血浆丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、尿素氮(BUN)、血肌酐(Cr)均较治疗前有不同程度升高,乳酸脱氢酶(LDH)、肌酸激酶(CK)有所降低,且治疗组器官功能等指标的改善情况明显好于对照组同期[ALT(U/L):81.38±5.83比108.47±4.88,AST(U/L):78.40±5.93比117.33±7.91,BUN(mmol/L):12.77±2.53比14.95±1.47,Cr(μmol/L):111.02±18.78比157.96±25.78,LDH(μmol·s-1·L-1):2.50±0.66比3.35±0.93,CK(U/L):98.21±21.44比150.86±28.96],差异有统计学意义(P<0.05或P<0.01).结论 参附注射液能稳定血压,对严重脓毒症患者的重要器官功能有保护作用.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined