羊耳菊提取物主要活性成分在大鼠体内的组织分布研究
Natural Product Research and Development(2019)
Abstract
为了研究大鼠灌胃羊耳菊提取物后7个指标成分在体内的组织分布情况,实验建立同时测定大鼠组织中4,5-二咖啡酰基奎宁酸、新绿原酸、绿原酸、3,4-二咖啡酰基奎宁酸、1,3-二咖啡酰基奎宁酸、隐绿原酸、木犀草苷的UP-LC-MS/MS方法,将羊耳菊提取物灌胃给予SD大鼠,分别于给药0.5、1.5、5h取其主要脏器和组织,采用UPLC-MS/MS测定各时间点下7个指标成分在脏器和组织中的分布情况.大鼠灌胃羊耳菊提取物后,对于新绿原酸,其浓度0.5h在小肠、肾、肺、肝达到峰值;1.5h在胃、肌、脾达到峰值;5 h在心达到峰值.对于绿原酸,其浓度0.5h在小肠、肾、肺、心达到峰值;1.5h在胃、肌、脾、肝达到峰值.对于隐绿原酸,其浓度0.5h在小肠、肾、肺达到峰值;1.5h时在心、肝、脾、肺、胃达到峰值.对于1,3-二咖啡酰基奎宁酸,其浓度0.5h在心、肺、肾、小肠达到峰值;1.5h在肝、脾、肌、胃达到峰值.对于3,4-二咖啡酰基奎宁酸,其浓度0.5h在小肠和肾达到峰值;1.5h在肝、脾、肌、胃达到峰值;5 h在心、肺达到峰值.对于4,5-二咖啡酰基奎宁酸,其浓度0.5h在小肠、肾、心达到峰值;1.5h在肝、脾、肌、胃达到峰值;5 h在肺达到峰值.对于木犀草苷,其浓度0.5h在小肠和心达到峰值;1.5h在肝、脾、胃达到峰值;5 h在肺和肾达到峰值.7个指标成分可迅速、广泛地分布在各组织器官中,脑组织中未检测到该7种成分.7种成分主要分布在胃、小肠和肾组织中,对肾脏表现出较强的亲和力,推测肾脏可能是羊耳菊的主要排泄器官之一.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined