2017年5月7日广州极端强降水对流系统结构、触发和维持机制
Meteorological Monthly(2018)
Abstract
2017年5月7日,广州市增城区新塘镇等地出现了小时雨量超过180 mm、3 h雨量超过330 mm的极端强降水事件(简称"5·7"极端强降水事件),导致了严重的经济损失.这次过程的高强度降水分为两个主要阶段:花都区降水和增城区降水,每个阶段的强降水均集中在2~3 h内,最大分钟级降水达到了5 mm的强度,增城区新塘镇184.4 mm的极端小时雨量中约120 mm的雨量是在05:30—06:00的半小时内产生的.地闪监测显示,对流发展的第一阶段伴有较少的负地闪,第二阶段仅伴有几个闪电.雷达和卫星资料显示,强降水对流系统具有空间尺度小,发展迅速的特征;但发展成熟阶段的反射率因子大值区和卫星低TBB区在空间上出现明显偏离.强倾斜上升气流可能是造成反射率因子大值区和卫星低TBB区空间偏离的原因.雷达资料垂直剖面显示,对流具有回波顶高较低、云底高度低、强回波质心低等低质心暖云降水的特征.地势分布和辐射降温是花都北部低温中心的主要成因,大尺度弱冷空气和冷中心伴随的地形的共同作用,使得偏南暖湿气流向北移动受阻后,在花都地形的强迫抬升下触发了对流.偏南暖湿气流的持续输送、花都地形的阻挡和冷池的作用是01—03时对流维持的主要原因,弱冷空气的南下对03—04时对流系统的快速南移起到了重要作用,而冷池驱动的对流发展模型可以解释增城地区05—06时对流的较长时间维持.弱的环境引导气流和偏南暖湿气流使得高效的低质心、高效率强降水对流系统较长时间影响同一局地区域,从而导致了花都和增城两地局地极端强降水的出现.
MoreTranslated text
Key words
extremely severe rainfall,structure,triggering and maintenance mechanism,low-echo-centroid warm cloud precipitation,terrain effect
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined