WeChat Mini Program
Old Version Features

基于病例队列数据的比例风险模型的诊断

Acta Mathematica Sinica(2020)

Cited 1|Views4
Abstract
病例队列设计是一种在生存分析中广泛应用的可以降低成本又能提高效率的抽样方法.对于病例队列数据,已经有很多统计方法基于比例风险模型来估计协变量对生存时间的影响.然而,很少有工作基于病例队列数据来检验模型的假设是否成立.在这篇文章中,我们基于渐近的零均的值随机过程提出了一类检验统计量,这类检验统计量可以基于病例队列数据来检验比例风险模型的假设是否成立.我们通过重抽样的方法来逼近上述检验统计量的渐近分布,通过数值模拟来研究所提方法在有限样本下的表现,最后将所提出的方法应用于一个国家肾母细胞瘤研究的真实数据集上.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined