WeChat Mini Program
Old Version Features

Changes of Quantitative CT-based Airway Wall Dimensions in Patients with COVID-19 During Early Recovery

JOURNAL OF THORACIC DISEASE(2021)

Guangzhou Med Univ

Cited 3|Views21
Abstract
BACKGROUND:As the coronavirus disease 19 (COVID-19) pandemic evolves, the need for recognizing the structural pulmonary changes of the disease during early convalescence has emerged. Most studies focus on parenchymal destruction of the disease; but little is known about whether the disease affects the airway. This study was conducted to investigate the changes in airway dimensions and explore the associated factors during early convalescence in patients with COVID-19.METHODS:We retrospectively analyzed quantitative computed tomography (CT)-based airway measures of 69 patients with COVID-19 from 5 February to 17 March 2020, and 32 non-COVID-19 participants from 1 January 2018 to 31 December 2019 from Guangzhou, China. The well-established measures of wall area fraction and the square root of the wall area of a hypothetical bronchus with an inner perimeter of 10 mm, were used to describe airway wall dimensions. We described the characteristics of the dimensions and inner area of airways in 66 patients with COVID-19 at the initial and convalescent stages of the disease, and compared them with the non-COVID-19 group. Linear regression models were constructed to investigate the association of airway dimensions with duration of hospitalization or disease severity after recovery. Partial correlation coefficients were calculated to investigate whether inflammatory markers were related to airway dimensions.RESULTS:Among 66 patients with COVID-19, airway dimensions were greater during disease initiation than early convalescence, which was significantly greater than in non-COVID-19 participants. No significant difference was found between the patients with COVID-19 at the initial stage and the non-COVID-19 controls regarding the first to eighth generations of the inner area. In adjusted regression models, duration of hospitalization was negatively associated with wall area fraction of the first to the sixth generation of airways. No significant associations exist between airway dimensions and disease severity, or airway dimensions with inflammatory markers.CONCLUSIONS:Airway dimensions in patients with COVID-19 during disease initiation are greater than those in non-COVID-19 participants. Such structural airway changes continue to remain significantly greater during early convalescence. No evidence shows that disease severity or inflammatory markers are associated with airway dimensions, implying that the primary lesion attacked by COVID-19 might not be the airways.
More
Translated text
Key words
Airway wall thickness,coronavirus disease 19 ( COVID-19),coronavirus,early convalescence,quantitative computed tomography (quantitative CT)
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined