WeChat Mini Program
Old Version Features

Dynamics of Confined Microgel Liquids: Weakened Spatial Confinement Effect by Microgel Particle Compliance

Langmuir(2021)

LiquiGlide Inc

Cited 1|Views9
Abstract
Spatial confinement has a great impact on the structures and dynamics of interfacial molecular and polymer liquid films. Most prior research has focused on confined liquids of fixed material compliance and often treated them in approximation to the "hard-sphere" interaction model. In this study, we microscopically investigate the structural dynamics of highly deformable poly(N-isopropylacrylamide) (PNIPAM) microgels confined between two solid surfaces in comparison to that of nearly nondeformable microgels of the same chemistry. We observe that the mobility and structural relaxation of highly deformable PNIPAM microgels at an apparent volume fraction, phi= 0.49-0.70, show little change with the reduction of gap spacing, in stark contrast to confinement-induced dynamic retardation of "hard-sphere"-like stiff PNIPAM microgels. The critical gap spacing, defined as the onset of confinement effect to deviate from the bulk behavior, is found to be approximately 17-22 particle layers for highly deformable microgels of phi = 0.56-0.70, much smaller than that of approximately 40 particle layers or larger for stiff microgels or model "hard-sphere" colloidal liquids of similar phi. Additionally, we observe no evident confinement-enhanced structural reorganization of deformable microgels near the confining surfaces when gap spacing approaches the critical gap spacing. Microgel deformation upon strong confinement is attributed to the disrupted confinement-induced ordering of confined microgels. Hence, it is clearly indicated that spatial confinement exhibits a much weaker effect on highly compliant microgel particles than stiff ones, resulting in a significantly less reduction in microgel interfacial dynamics. It therefore gives insights into the molecular design of polymeric thin films of variable compliance to control friction and lubrication.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined