WeChat Mini Program
Old Version Features

Recognition and detection of aero-engine blade damage based on Improved Cascade Mask R-CNN

APPLIED OPTICS(2021)

Air Force Engn Univ

Cited 27|Views10
Abstract
Aero-engine blades are an integral part of the aero-engine, and the integrity of these blades affects the flight performance and safety performance of an aircraft. The traditional manual detection method is time-consuming, labor-intensive, and inefficient. Hence, it is particularly important to use intelligent detection methods to detect and identify damage. In order to quickly and accurately identify the damage of the aero-engine blades, the present study proposes a network based on the Improved Cascade Mask R-CNN network-to establish the damage related to the aero-engine blades and detection models. The model can identify the damage type and locate and segment the area of damage. Furthermore, the accuracy rate can reach up to 98.81%, the Bbox-mAP is 78.7%, and the Segm-mAP is 77.4%. In comparing the Improved Cascade Mask R-CNN network with the YOLOv4, Cascade R-C NN, Res2Net, and Cascade Mask R-CNN networks, the results revealed that the network used in the present is excellent and effective. (C) 2021 Optical Society of America
More
Translated text
Key words
recognition,aero-engine,r-cnn
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined