Enhance Low Level Temperature and Moisture Profiles Through Combining NUCAPS, ABI Observations, and RTMA Analysis
Earth and Space Science(2021)
Chinese Acad Sci
Abstract
Abstract Thermodynamic information from low levels in the atmosphere is crucial for operational weather forecasts and meteorological researchers. The NOAA Unique Combined Atmospheric Processing System (NUCAPS) sounding products have been proven beneficial to fill the data gap between synoptic radiosonde observations (RAOBs). However, compared with the upper troposphere, the accuracy of NUCAPS soundings in the low levels still needs improvement. In this study, a deep neural network (DNN) is applied to fuse multiple data sources to enhance the NUCAPS temperature and moisture profiles in the lower atmosphere. The network is developed by combining satellite observations, including NUCAPS sounding retrievals and high resolution geostationary satellite observations from the Advanced Baseline Imager, and surface analysis from the Real‐Time Mesoscale Analysis (RTMA) as inputs, while collocated soundings from ECMWF re‐analysis version 5 are used as the benchmark for the training. The performance of the model is evaluated by using the independent testing data set, data from a different year, as well as collocated RAOBs, showing improvement to the temperature and moisture profiles by reducing the root‐mean‐squared‐error (RMSE) by more than 30% in the lower atmosphere (from 700 hPa to surface) in both clear sky and partially cloudy conditions. A convective event from June 18, 2017 is presented to illustrate the application of the enhanced low level soundings on high impact weather events. The enhanced soundings from fused data capture the large surface‐based convective available potential energy structures in the preconvection environment, which is very useful for severe storm nowcasting and forecasting applications.
MoreTranslated text
Key words
low level,sounding,NUCAPS,ABI,surface observation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined