Changes in Tail Posture Detected by a 3D Machine Vision System Are Associated with Injury from Damaging Behaviours and Ill Health on Commercial Pig Farms
PLoS ONE(2021)SCI 3区
SRUC | Innovent Technol Ltd | Garth Pig Practice Ltd
Abstract
To establish whether pig tail posture is affected by injuries and ill health, a machine vision system using 3D cameras to measure tail angle was used. Camera data from 1692 pigs in 41 production batches of 42.4 (±16.6) days in length over 17 months at seven diverse grower/finisher commercial pig farms, was validated by visiting farms every 14(±10) days to score injury and ill health. Linear modelling of tail posture found considerable farm and batch effects. The percentage of tails held low (0°) or mid (1–45°) decreased over time from 54.9% and 23.8% respectively by -0.16 and -0.05%/day, while tails high (45–90°) increased from 21.5% by 0.20%/day. Although 22% of scored pigs had scratched tails, severe tail biting was rare; only 6% had tail wounds and 5% partial tail loss. Adding tail injury to models showed associations with tail posture: overall tail injury, worsening tail injury, and tail loss were associated with more pigs detected with low tail posture and fewer with high tails. Minor tail injuries and tail swelling were also associated with altered tail posture. Unexpectedly, other health and injury scores had a larger effect on tail posture- more low tails were observed when a greater proportion of pigs in a pen were scored with lameness or lesions caused by social aggression. Ear injuries were linked with reduced high tails. These findings are consistent with the idea that low tail posture could be a general indicator of poor welfare. However, effects of flank biting and ocular discharge on tail posture were not consistent with this. Our results show for the first time that perturbations in the normal time trends of tail posture are associated with tail biting and other signs of adverse health/welfare at diverse commercial farms, forming the basis for a decision support system.
MoreTranslated text
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2005
被引用274 | 浏览
2014
被引用142 | 浏览
2014
被引用81 | 浏览
2017
被引用159 | 浏览
2018
被引用29 | 浏览
2019
被引用111 | 浏览
2019
被引用11 | 浏览
2020
被引用68 | 浏览
2020
被引用7 | 浏览
2021
被引用40 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话