Chrome Extension
WeChat Mini Program
Use on ChatGLM

Generative perspective of the primary visual cortex

semanticscholar(2021)

Cited 0|Views1
Abstract
According to analysis-by-synthesis theories of perception, the primary visual cortex (V1) reconstructs visual stimuli through top-down pathway, and higher-order cortex reconstructs V1 activity. Experiments also found that neural representations are generated in a topdown cascade during visual imagination. What code does V1 provide higher-order cortex to reconstruct or simulate to improve perception or imaginative creativity? What unsupervised learning principles shape V1 for reconstructing stimuli so that V1 activity eigenspectrum is power-law with close-to-1 exponent? Using computational models, we reveal that reconstructing the activities of V1 complex cells facilitate higher-order cortex to form representations smooth to shape morphing of stimuli, improving perception and creativity. Power-law eigenspectrum with close-to-1 exponent results from the constraints of sparseness and temporal slowness when V1 is reconstructing stimuli, at a sparseness strength that best whitens V1 code and makes the exponent most insensitive to slowness strength. Our results provide fresh insights into V1 computation.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出V1皮层通过重构视觉刺激并形成幂律特征谱,从而提高高级皮层的感知和想象创造力。

方法】:通过计算模型,研究V1复杂细胞活动重构对高级皮层形成平滑形态变化表示的影响。

实验】:实验使用计算模型,验证了在稀疏性和时间缓慢性的约束下,V1重构刺激时形成幂律特征谱,数据集未明确提及,但结果揭示了V1计算的新的见解。