The polarity and specificity of SARS-CoV2 -specific T lymphocyte responses determine disease susceptibility
medRxiv(2021)
Abstract
Optimal vaccination and immunotherapy against coronavirus disease COVID-19 relies on the in-depth comprehension of immune responses determining the individual susceptibility to be infected by SARS-CoV-2 and to develop severe disease. We characterized the polarity and specificity of circulating SARS-CoV-2-specific T cell responses against whole virus lysates or 186 unique peptides derived from the SARS-CoV-2 or SARS-CoV-1 ORFeome on 296 cancer-bearing and 86 cancer-free individuals who were either from the pre-COVID-19 era (67 individuals) or contemporary COVID-19-free (237 individuals) or who developed COVID-19 (78 individuals) in 2020/21. The ratio between the prototypic T helper 1 (TH1) cytokine, interleukin-2, and the prototypic T helper 2 (TH2) cytokine, interleukin-5 (IL-5), released from SARS-CoV-2-specific memory T cells measured in early 2020, among SARS-CoV-2-negative persons, was associated with the susceptibility of these individuals to develop PCR-detectable SARS-CoV-2 infection in late 2020 or 2021. Of note, T cells from individuals who recovered after SARS-CoV-2 re-infection spontaneously produced elevated levels of IL-5 and secreted the immunosuppressive TH2 cytokine interleukin-10 in response to SARS-CoV-2 lysate, suggesting that TH2 responses to SARS-CoV-2 are inadequate. Moreover, individuals susceptible to SARS-CoV-2 infection exhibited a deficit in the TH1 peptide repertoire affecting the highly mutated receptor binding domain (RBD) amino acids (331-525) of the spike protein. Finally, current vaccines successfully triggered anti-RBD specific TH1 responses in 88% healthy subjects that were negative prior to immunization. These findings indicate that COVID-19 protection relies on TH1 cell immunity against SARS-CoV-2 S1-RBD which in turn likely drives the phylogenetic escape of the virus. The next generation of COVID-19 vaccines should elicit high-avidity TH1 (rather than TH2)-like T cell responses against the RBD domain of current and emerging viral variants.
MoreTranslated text
Key words
disease susceptibility,polarity,sars-cov
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined