WeChat Mini Program
Old Version Features

上胸段半椎体切除术后远端冠状面S畸形进展的危险因素

Chinese Journal of Spine and Spinal Cord(2021)

Cited 0|Views18
Abstract
目的:分析上胸段半椎体切除术后远端冠状面S畸形进展的发生率、特点及危险因素.方法:回顾性分析2005年1月~2015年1月于我院行后路半椎体切除术治疗的上胸段半椎体患者的临床及影像学资料68例.其中男性42例,女性26例;手术时年龄4.4±1.1岁(3~6岁),随访时间均在5年以上.所有患者均具有完整的术前及术后各次随访临床及影像学资料.根据术后终末随访时是否出现S畸形(≥20°),且远端代偿性胸弯(caudal thoracic curve,CTC)或远端代偿性腰弯(caudal lumbar curve,CLC)任一进展较术后2周≥20°为界限,将患者分为进展组(progressive group,PG)与非进展组(non-progressive group,NPG).分别比较两组患者的性别、年龄、Risser征、半椎体位置、融合节段数、顶椎旋转分级、平均随访时间等临床资料及术前及术后备次随访局部侧凸Cobb角、远端胸弯Cobb角、远端腰弯Cobb角、躯干平衡(trunk shift,TS)、近端固定椎倾斜角(upper instrumented vertebra tilt,UIV tilt)、远端固定椎倾斜角(lower instrumented vertebra tilt,LIV tilt)、远端固定椎椎隙成角(LIV/LIV+1 disc angle)、T1倾斜角(T1 tilt)、头部倾斜(head shift)、颈部倾斜(neck tilt)、肩部平衡(radiographic shoulder height,RSH)等影像学资料,分析上胸段半椎体畸形切除术后UIV水平化对远端冠状面畸形进展的影响.结果:上胸段半椎体切除联合后路内固定融合术平均矫正率(74.3±15.3)%,终末随访平均丢失率(4.3±2.2)%.术后冠状面失代偿6例,均为新发S畸形,发生率为8.8%.根据患者是否发生S畸形将患者分为畸形进展组(6例)与非进展组(62例),两组患者初次手术的性别、年龄、Risser征、半椎体位置、融合节段数、是否存在顶椎旋转、平均随访时间均无统计学差异(P>0.05).两组术前冠状面影像学参数:局部侧凸Cobb角、冠状面平衡、远端代偿性胸弯、远端代偿性腰弯、T1倾斜角、头部倾斜角、颈部倾斜角、肩部平衡均无统计学差异(P>0.05).两组间术后各次随访的局部侧凸Cobb角、近端固定椎倾斜角及T1倾斜角均有统计学差异(P<0.05).进展组患者近端固定椎倾斜角及T1倾斜角从术后至终末随访时逐渐增大,术后5年及终末随访对比术后2周有统计学差异(P<0.05);术后进展组患者术后半年及之后各次随访的腰段代偿弯逐渐增大,与非进展组对比有统计学差异(P<0.05);术后进展组患者术后1年及之后各次随访的胸椎代偿弯逐渐增大,与非进展组对比有统计学差异(P<0.05);术后5年及终末随访进展组患者颈部倾斜逐渐增大,与非进展组对比有统计学差异(P<0.05).术后各次随访TS、最下固定椎倾斜角、远端固定椎椎间隙成角、头部倾斜、肩部平衡均元明显变化,无统计学差异(P>0.05).结论:上胸段半椎体切除不彻底引起的UIV水平化不足可能是术后融合远端S曲线进展的危险因素.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined