WeChat Mini Program
Old Version Features

Trajectory Generation for Distributed Electric Propulsion Vehicles with Propeller Synchronization

AIAA Scitech 2021 Forum(2021)

University of Illinois

Cited 1|Views10
Abstract
View Video Presentation: https://doi.org/10.2514/6.2021-0586.vid In this paper, we propose a method for generating dynamically feasible trajectories for an acoustically aware vehicle with propeller phase control. The trajectory generation procedure allows both propeller phase control and navigation objectives to be considered simultaneously. The presented method is demonstrated where the mission objectives are given as a desired position and phase trajectory. From these trajectories, the full desired state of the vehicle is calculated. Furthermore, the control inputs that realize the desired mission objectives are computed. The acoustic performance for the given trajectory is estimated in terms of sound pressure level as a function of tracking performance. The method is demonstrated in simulation, where the vehicle must navigate through an urban environment with both spatial and acoustic constraints. In the presented scenario, the vehicle must follow a given flight path, and can only reduce sound pressure level by changing the propeller phase targets.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined