WeChat Mini Program
Old Version Features

JSNMF Enables Effective and Accurate Integrative Analysis of Single-Cell Multiomics Data

Briefings in Bioinformatics(2022)

Chinese Univ Hong Kong

Cited 15|Views30
Abstract
The single-cell multiomics technologies provide an unprecedented opportunity to study the cellular heterogeneity from different layers of transcriptional regulation. However, the datasets generated from these technologies tend to have high levels of noise, making data analysis challenging. Here, we propose jointly semi-orthogonal nonnegative matrix factorization (JSNMF), which is a versatile toolkit for the integrative analysis of transcriptomic and epigenomic data profiled from the same cell. JSNMF enables data visualization and clustering of the cells and also facilitates downstream analysis, including the characterization of markers and functional pathway enrichment analysis. The core of JSNMF is an unsupervised method based on JSNMF, where it assumes different latent variables for the two molecular modalities, and integrates the information of transcriptomic and epigenomic data with consensus graph fusion, which better tackles the distinct characteristics and levels of noise across different molecular modalities in single-cell multiomics data. We applied JSNMF to single-cell multiomics datasets from different tissues and different technologies. The results demonstrate the superior performance of JSNMF in clustering and data visualization of the cells. JSNMF also allows joint analysis of multiple single-cell multiomics experiments and single-cell multiomics data with more than two modalities profiled on the same cell. JSNMF also provides rich biological insight on the markers, cell-type-specific region-gene associations and the functions of the identified cell subpopulation.
More
Translated text
Key words
Single-cell multiomics data,Nonnegative matrix factorization,Data integration,Visualization
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined