Chrome Extension
WeChat Mini Program
Use on ChatGLM

Active Sets for Explicitly Constrained Evolutionary Optimization.

Evolutionary Computation(2022)CCF BSCI 4区SCI 3区

Vorarlberg Univ Appl Sci | Dalhousie Univ

Cited 2|Views13
Abstract
Active-set approaches are commonly used in algorithms for constrained numerical optimization. We propose that active-set techniques can beneficially be employed for evolutionary black-box optimization with explicit constraints and present an active-set evolution strategy. We experimentally evaluate its performance relative to those of several algorithms for constrained optimization and find that the active-set evolution strategy compares favourably for the problem set under consideration.
More
Translated text
Key words
Black-box optimization,constraint handling,evolution strategies,active-set techniques
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers

Evolutionary Mixed-Integer Optimization with Explicit Constraints.

Yuan Hong,Dirk V. Arnold
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023 2023

被引用0

Direct Augmented Lagrangian Evolution Strategies

PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024 2024

被引用0

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest