WeChat Mini Program
Old Version Features

Learning the Spatiotemporal Relationship Between Wind and Significant Wave Height Using Deep Learning

Environmental Data Science(2023)

Univ Rennes

Cited 2|Views17
Abstract
Ocean wave climate has a significant impact on near-shore and off-shore human activities, and its characterisation can help in the design of ocean structures such as wave energy converters and sea dikes. Therefore, engineers need long time series of ocean wave parameters. Numerical models are a valuable source of ocean wave data; however, they are computationally expensive. Consequently, statistical and data-driven approaches have gained increasing interest in recent decades. This work investigates the spatio-temporal relationship between North Atlantic wind and significant wave height (Hs) at an off-shore location in the Bay of Biscay, using a two-stage deep learning model. The first step uses convolutional neural networks (CNNs) to extract the spatial features that contribute to Hs. Then, long short-term memory (LSTM) is used to learn the long-term temporal dependencies between wind and waves.
More
Translated text
Key words
Convolutional neural networks,long short-term memory,significant wave height,wind fields
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined