WeChat Mini Program
Old Version Features

基于空间-时间相关成像技术的胎儿心脏3D建模打印方法学研究及临床初步应用

Chinese Journal of Ultrasonography(2022)

Cited 0|Views29
Abstract
目的:探讨基于超声数据三维(three-dimensional,3D)建模打印胎儿心脏三种方法的可行性、准确性及其在不同胎儿心血管结构展示中的价值。方法:选取2019年1-12月于空军军医大学唐都医院超声医学科进行胎儿心脏检查的胎儿93例,其中心脏正常83例,心脏畸形10例。利用空间-时间相关成像技术(spatio-temporal image correlation,STIC)采集胎儿超声心动图容积数据。采用血流建模、血池建模和空腔建模三种方法对93例胎儿心脏进行3D建模,利用光固化3D打印技术打印实体模型。比较3D数字模型及打印模型上的测值和相对应的在胎儿超声心动图图像上的测值,评估三种建模方法的可行性和准确性。结果:多普勒血流图像数据建模的胎儿心脏血流模型真实呈现了细小血管的畸形及走向;利用血池建模3D打印模型可直观呈现出心脏及大血管的畸形结构;空腔建模3D打印模型可准确呈现瓣膜及结构缺损部位。Bland-Altman分析显示,不论是正常还是心脏畸形胎儿相关指标超声测值与数字建模和3D打印模型测值一致性良好,其中正常胎儿心脏左室和右室长径的超声图像测值[(15.3±1.9) mm,(13.2±1.9)mm]与其空腔建模的数字模型[(15.1±1.9) mm,(12.9±1.9)mm]和3D打印模型[(15.1±1.9)mm,(13.0±1.9)mm]测值比较,差异均无统计学意义( P>0.05)。操作者内和操作者间一致性良好。 结论:血流建模、血池建模和空腔建模三种方法在不同种类胎儿心脏畸形结构展示方面各有优势,应从中选择合适的建模方法进行3D建模打印,弥补单一建模方式的局限性。三种建模方法所得数字模型与3D打印模型及超声心动图参数测值一致性及重复性较好。
More
Translated text
Key words
Echocardiography, fetal,Three-dimensional modeling methods,Three-dimensional printing,Spatio-temporal image correlation,Congenital heart disease
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined