肝内胆管细胞癌切除术后复发与生存时间的影响因素分析
Chinese Journal of Hepatobiliary Surgery(2022)
Abstract
目的:分析手术切除后不同因素对肝内胆管细胞癌(ICC)预后的影响。方法:回顾性分析2015年12月至2019年12月在解放军总医院第五医学中心诊断为ICC并行手术切除患者的临床资料。共纳入39例患者为研究对象,其中男性23例,女性16例,年龄(54.1±7.2)岁。收集患者的体质量指数、乙型肝炎病毒感染情况、肿瘤长径、分化程度、微血管癌栓、淋巴结转移、肿瘤糖类抗原19-9(CA19-9),分析影响术后复发及生存时间的危险因素。结果:肿瘤长径≥5 cm患者的中位复发时间5.0个月短于肿瘤长径<5 cm者的11.0个月,伴有微血管癌栓患者的中位复发时间为6.0个月短于非微血管癌栓者的54.0个月,淋巴转移患者的中位复发时间5.0个月短于非淋巴结转移者的8.0个月,上述指标比较差异均有统计学意义(
P<0.05)。CA19-9≥100 U/ml患者中位生存时间9.0个月短于CA19-9<100 U/ml者的27.0个月,两组比较差异有统计学意义(
P<0.05)。肿瘤长径>5 cm、微血管癌栓、淋巴结转移、CA19-9≥100 U/ml是影响ICC切除术后复发时间的危险因素,CA19-9≥100 U/ml是影响ICC切除术后生存时间的危险因素。
结论:肿瘤长径、微血管癌栓、淋巴结转移、CA19-9水平可用于判断ICC复发,CA19-9水平亦是判断ICC患者术后生存时间的重要指标。
MoreTranslated text
Key words
Bile duct neoplasms,Cholangiocarcinoma,Hepatectomy,Prognosis
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined