WeChat Mini Program
Old Version Features

Polarization Dependent Beam Pointing Jitter in Laser Wake Field Accelerators

arXiv · Accelerator Physics(2022)

Cited 0|Views11
Abstract
We present experimental results, which show a laser polarization dependent contribution to electron beam pointing jitter in laser wakefield accelerators (LWFA). We develop a theoretical model for the polarization dependence in terms of the transverse dynamics of trapped electrons, resonantly driven by bubble centroid oscillations. The latter are generated by the carrier wave phase evolution at the self-steepened laser pulse front. In the model, the polarization dependent jitter originates from shot-to-shot fluctuations of the laser carrier envelope phase. The model is verified by particle in cell simulations and suggests that for non-CEP stabilized systems the polarization dependent jitter may form an ultimate limit to beam pointing stability in LWFAs.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined